2,108 research outputs found

    Accurate autocorrelation modeling substantially improves fMRI reliability.

    Get PDF
    Given the recent controversies in some neuroimaging statistical methods, we compare the most frequently used functional Magnetic Resonance Imaging (fMRI) analysis packages: AFNI, FSL and SPM, with regard to temporal autocorrelation modeling. This process, sometimes known as pre-whitening, is conducted in virtually all task fMRI studies. Here, we employ eleven datasets containing 980 scans corresponding to different fMRI protocols and subject populations. We found that autocorrelation modeling in AFNI, although imperfect, performed much better than the autocorrelation modeling of FSL and SPM. The presence of residual autocorrelated noise in FSL and SPM leads to heavily confounded first level results, particularly for low-frequency experimental designs. SPM's alternative pre-whitening method, FAST, performed better than SPM's default. The reliability of task fMRI studies could be improved with more accurate autocorrelation modeling. We recommend that fMRI analysis packages provide diagnostic plots to make users aware of any pre-whitening problems

    P-31 magnetization transfer measurements of P-i -> ATP flux in exercising human muscle

    Get PDF
    Fundamental criticisms have been made over the use of (31)P magnetic resonance spectroscopy (MRS) magnetization transfer estimates of inorganic phosphate (P(i))→ATP flux (V(Pi-ATP)) in human resting skeletal muscle for assessing mitochondrial function. Although the discrepancy in the magnitude of V(Pi-ATP) is now acknowledged, little is known about its metabolic determinants. Here we use a novel protocol to measure V(Pi-ATP) in human exercising muscle for the first time. Steady-state V(Pi-ATP) was measured at rest and over a range of exercise intensities and compared with suprabasal oxidative ATP synthesis rates estimated from the initial rates of postexercise phosphocreatine resynthesis (V(ATP)). We define a surplus P(i)→ATP flux as the difference between V(Pi-ATP) and V(ATP). The coupled reactions catalyzed by the glycolytic enzymes GAPDH and phosphoglycerate kinase (PGK) have been shown to catalyze measurable exchange between ATP and P(i) in some systems and have been suggested to be responsible for this surplus flux. Surplus V(Pi-ATP) did not change between rest and exercise, even though the concentrations of P(i) and ADP, which are substrates for GAPDH and PGK, respectively, increased as expected. However, involvement of these enzymes is suggested by correlations between absolute and surplus P(i)→ATP flux, both at rest and during exercise, and the intensity of the phosphomonoester peak in the (31)P NMR spectrum. This peak includes contributions from sugar phosphates in the glycolytic pathway, and changes in its intensity may indicate changes in downstream glycolytic intermediates, including 3-phosphoglycerate, which has been shown to influence the exchange between ATP and P(i) catalyzed by GAPDH and PGK

    Longitudinal assessment of global and regional atrophy rates in Alzheimer's disease and dementia with Lewy bodies.

    Get PDF
    BACKGROUND & OBJECTIVE: Percent whole brain volume change (PBVC) measured from serial MRI scans is widely accepted as a sensitive marker of disease progression in Alzheimer's disease (AD). However, the utility of PBVC in the differential diagnosis of dementia remains to be established. We compared PBVC in AD and dementia with Lewy bodies (DLB), and investigated associations with clinical measures. METHODS: 72 participants (14 DLBs, 25 ADs, and 33 healthy controls (HCs)) underwent clinical assessment and 3 Tesla T1-weighted MRI at baseline and repeated at 12 months. We used FSL-SIENA to estimate PBVC for each subject. Voxelwise analyses and ANCOVA compared PBVC between DLB and AD, while correlational tests examined associations of PBVC with clinical measures. RESULTS: AD had significantly greater atrophy over 1 year (1.8%) compared to DLB (1.0%; p = 0.01) and HC (0.9%; p < 0.01) in widespread regions of the brain including periventricular areas. PBVC was not significantly different between DLB and HC (p = 0.95). There were no differences in cognitive decline between DLB and AD. In the combined dementia group (AD and DLB), younger age was associated with higher atrophy rates (r = 0.49, p < 0.01). CONCLUSIONS: AD showed a faster rate of global brain atrophy compared to DLB, which had similar rates of atrophy to HC. Among dementia subjects, younger age was associated with accelerated atrophy, reflecting more aggressive disease in younger people. PBVC could aid in differentiating between DLB and AD, however its utility as an outcome marker in DLB is limited.This work was supported by the Sir Jules Thorn Charitable Trust (grant number 05/JTA), the NIHR Biomedical Research Unit in Dementia and the Biomedical Research Centre awarded to Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge, and the NIHR Biomedical Research Unit in Dementia and the Biomedical Research Centre awarded to Newcastle upon Tyne Hospitals NHS Foundation Trust and the Newcastle University. Elijah Mak was in receipt of a Gates Cambridge, PhD studentship.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S2213158215000182#

    The Value of Sex in Procreative Reasons

    Get PDF
    Copyright Taylor and Francis Group, LLC. This is an open access article distributed under the Supplemental Terms and Conditions for iOpenAccess articles published in Taylor & Francis journals, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    Distinctive Personality Traits and Neural Correlates Associated with Stimulant Drug Use Versus Familial Risk of Stimulant Dependence

    Get PDF
    BackgroundStimulant drugs such as cocaine and amphetamine have a high abuse liability, but not everyone who uses them develops dependence. However, the risk for dependence is increased for individuals with a family history of addiction. We hypothesized that individuals without a family history of dependence who have been using cocaine recreationally for several years but have not made the transition to dependence will differ in terms of personality traits and brain structure from individuals who are either dependent on stimulants or at risk for dependence.MethodsWe compared 27 individuals without a familial risk of dependence who had been using cocaine recreationally with 50 adults with stimulant dependence, their nondependent siblings (n = 50), and unrelated healthy volunteers (n = 52) who had neither a personal nor a family history of dependence. All participants underwent a magnetic resonance imaging brain scan and completed a selection of personality measures that have been associated with substance abuse.ResultsIncreased sensation-seeking traits and abnormal orbitofrontal and parahippocampal volume were shared by individuals who were dependent on stimulant drugs or used cocaine recreationally. By contrast, increased levels of impulsive and compulsive personality traits and limbic-striatal enlargement were shared by stimulant-dependent individuals and their unaffected siblings.ConclusionsWe provide evidence for distinct neurobiological phenotypes that are either associated with familial vulnerability for dependence or with regular stimulant drug use. Our findings further suggest that some individuals with high sensation-seeking traits but no familial vulnerability for dependence are likely to use cocaine but may have relatively low risk for developing dependence
    corecore